Magnetic field and dynamic pressure ULF fluctuations in coronal-mass-ejection-driven sheath regions
نویسنده
چکیده
Compressed sheath regions form ahead of interplanetary coronal mass ejections (ICMEs) that are sufficiently faster than the preceding solar wind. The turbulent sheath regions are important drivers of magnetospheric activity, but due to their complex internal structure, relatively little is known on the distribution of the magnetic field and plasma variations in them. In this paper we investigate ultra low frequency (ULF) fluctuations in the interplanetary magnetic field (IMF) and in dynamic pressure (Pdyn) using a superposed epoch analysis of 41 sheath regions observed during solar cycle 23. We find strongest fluctuation power near the shock and in the vicinity of the ICME leading edge. The IMF and Pdyn ULF power have different profiles within the sheath; the former is enhanced in the leading part of the sheath, while the latter is increased in the trailing part of the sheath. We also find that the ICME properties affect the level and distribution of the ULF power in sheath regions. For example, sheath regions associated with strong or fast ICMEs, or those that are crossed at intermediate distances from the center, have strongest ULF power and large variation in the power throughout the sheath region. The weaker or slower ICMEs, or those that are crossed centrally, have in general considerably weaker ULF power with relatively smooth profiles. The strong and abrupt decrease of the IMF ULF power at the ICME leading edge could be used to distinguish the ICME from the preceding sheath plasma.
منابع مشابه
Downstream structure and evolution of a simulated CME-driven sheath in the solar corona
Context. The transition of the magnetic field from the ambient magnetic field to the ejecta in the sheath downstream of a coronal mass ejection (CME) driven shock is analyzed in detail. The field rotation in the sheath occurs in a two-layer structure. In the first layer, layer 1, the magnetic field rotates in the coplanarity plane (plane of shock normal and the upstream magnetic field), and in ...
متن کاملMagnetospheric cavity modes driven by solar wind dynamic pressure fluctuations
[1] We present results from Lyon-Fedder-Mobarry (LFM) global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere interaction. We use these simulations to investigate the role that solar wind dynamic pressure fluctuations play in the generation of magnetospheric ultra-low frequency (ULF) pulsations. The simulations presented in this study are driven with idea...
متن کاملSynchrotron Radio Emission from a Fast Halo Coronal Mass Ejection
An interplanetary (IP) type-II-like radio burst is analyzed. It occurred on 2003 June 17-18 in association with a fast halo coronal mass ejection (CME), an M6.8 soft-X-ray (SXR) flare, and produced a solar proton event. Unlike coronal type II bursts and the majority of IP type II radio emissions, the IP type-II-like event associated with the fast halo CME on June 17-18 varies smoothly in time a...
متن کاملSolar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations
[1] Several observational studies suggest that solar wind dynamic pressure fluctuations can drive magnetospheric ultralow‐frequency (ULF) waves on the dayside. To investigate this causal relationship, we present results from Lyon‐Fedder‐Mobarry (LFM) global, three‐dimensional magnetohydrodynamic (MHD) simulations of the solar wind–magnetosphere interaction. These simulations are driven with syn...
متن کاملPlasma depletion and mirror waves ahead of interplanetary coronal mass ejections
[1] We find that the sheath regions between fast interplanetary coronal mass ejections (ICMEs) and their preceding shocks are often characterized by plasma depletion and mirror wave structures, analogous to planetary magnetosheaths. A case study of these signatures in the sheath of a magnetic cloud (MC) shows that a plasma depletion layer (PDL) coincides with magnetic field draping around the M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013